Петер Дирихле

   Петер Густав Лежен Дирихле (1805—1859) происходил из французской эмигрантской семьи. Его отец работал почтмейстером в Дюрене. В 1822—1827 гг. Дирихле был домашним учителем в Париже, входил в кружок молодых ученых, группировавшихся вокруг Фурье. По рекомендации Гумбольдта в 1827 г. Дирихле был приглашен в Бреславль. В 1829 г. он переехал в Берлин, где 26 лет работал в Берлинском университете, сначала в должности доцента, а с 1839 г. в должности профессора. Преподавание в университете он совмещал с преподаванием в военной и строительной академиях.

    В 1855 г. после смерти Гаусса Дирихле занял его место в Геттингенском университете. Он остался в памяти коллег не только своими научными открытиями, но и особой манерой чтения лекций, которой подражали во всех университетах Германии.

   Научные интересы Дирихле были весьма разносторонними. В теории чисел он установил формулы для числа классов бинарных квадратичных форм с заданным определителем и доказал теорему о бесконечности простых чисел в арифметической прогрессии из целых чисел, первый член которой и разность взаимно просты. К решению этих задач Дирихле применил аналитические функции, названные рядами Дирихле. Им создана общая теория алгебраических единиц в алгебраическом числовом поле.

  В математическом анализе Дирихле впервые точно сформулировал и исследовал понятие условной сходимости ряда, дал строгое доказательство возможности разложения в ряд Фурье кусочно непрерывной и кусочно монотонной функции, что послужило обоснованием для многих дальнейших исследований.

   Его лекции по теории чисел, теории рядов и определенного интеграла, краевым задачам математической физики, теории потенциала оказали огромное влияние на выдающихся математиков более позднего времени: Римана, Кронекера, Дедекинда и других.

 

Научная деятельность

Дирихле принадлежит ряд крупных открытий в самых разных областях математики, а также в механике и математической физике.

В анализе и математической физике он ввёл понятие условной сходимости ряда и дал признак сходимости. Доказал разложимость в ряд Фурье всякой монотонной кусочно-непрерывной функции. Высказал плодотворный Принцип Дирихле. Существенно продвинул теорию потенциала.

В теории чисел доказал теорему о прогрессии: последовательность {a + nb}, где a, b — взаимно простые целые числа, содержит бесконечно много простых чисел.

 

Ученики

Среди учеников Дирихле были:

  • Леопольд Кронекер
  • Рудольф Липшиц
  • Фердинанд Эйзенштейн

 

Память

В 1970 г. Международный астрономический союз присвоил имя Дирихле кратеру на обратной стороне Луны.